- Home
- Standard 12
- Physics
The electric field part of an electromagnetic wave in a medium is represented by $E_x = 0\,;$
${E_y} = 2.5\,\frac{N}{C}\,\,\cos \,\left[ {\left( {2\pi \, \times \,{{10}^6}\,\frac{{rad}}{m}} \right)t - \left( {\pi \times {{10}^{ - 2}}\frac{{rad}}{s}} \right)x} \right];$
$E_z = 0$. The wave is
Moving along $-x$ direction with frequency $10^6\,Hz$ and wave length $200\,m$.
Moving along $y$ direction with frequency $2\pi \times 10^6\,Hz$ and wave length $200\,m$.
Moving along $x$ direction with frequency $10^6\,Hz$ and wave length $100\,m$.
Moving along $x$ direction with frequency $10^6\,Hz$ and wave length $200\,m$.
Solution
$\mathrm{E}_{\mathrm{y}}=2.5 \frac{\mathrm{N}}{\mathrm{C}} \cos \left[\left(2 \pi \times 10^{6} \mathrm{t}\right)-\pi \times 10^{-2} \mathrm{x}\right]$
direction – $X$ axis
wavelength $\lambda=\frac{2 \pi}{\mathrm{k}}=\frac{2 \pi}{\pi \times 10^{-2}}=200 \mathrm{\,m}$
$\mathrm{f}=\frac{\omega}{2 \pi}=\frac{2 \pi \times 10^{6}}{2 \pi}=10^{6} \mathrm{\,Hz}$