The equation of a wave on a string of linear mass density $0.04\, kgm^{-1}$ is given by : $y = 0.02\,\left( m \right)\,\sin \,\left[ {2\pi \left( {\frac{t}{{0.04\left( s \right)}} - \frac{x}{{0.50\left( m \right)}}} \right)} \right]$. The tension in the string is ..... $N$
$4.0$
$12.5$
$0.5$
$6.25$
steel wire $0.72\; m$ long has a mass of $5.0 \times 10^{-3}\; kg .$ If the wire is under a tension of $60\; N ,$ what is the speed (in $m/s$) of transverse waves on the wire?
Two pulses travel in mutually opposite directions in a string with a speed of $2.5 cm/s$ as shown in the figure. Initially the pulses are $10cm$ apart. What will be the state of the string after two seconds
A transverse wave travels on a taut steel wire with a velocity of ${v}$ when tension in it is $2.06 \times 10^{4} \;\mathrm{N} .$ When the tension is changed to $T$. the velocity changed to $\frac v2$. The value of $\mathrm{T}$ is close to
The percentage increase in the speed of transverse waves produced in a stretched string if the tension is increased by $4\, \%$, will be ......... $\%$
Figure here shows an incident pulse $P$ reflected from a rigid support. Which one of $A, B, C, D$ represents the reflected pulse correctly