The equation of base $BC$ of an equilateral triangle is $3x + 4y = 1$ and vertex is $(-3,2),$ then the area of triangle is-

  • A

    $\frac{4\sqrt 3}{75}$

  • B

    $\frac{4}{5\sqrt 3}$

  • C

    $\frac{8\sqrt 3}{75}$

  • D

    $\frac{16\sqrt 3}{25}$

Similar Questions

Let $B$ and $C$ be the two points on the line $y+x=0$ such that $B$ and $C$ are symmetric with respect to the origin. Suppose $A$ is a point on $y -2 x =2$ such that $\triangle ABC$ is an equilateral triangle. Then, the area of the $\triangle ABC$ is

  • [JEE MAIN 2023]

In a rectangle $A B C D$, the coordinates of $A$ and $B$ are $(1,2)$ and $(3,6)$ respectively and some diameter of the circumscribing circle of $A B C D$ has equation $2 x-y+4=0$. Then, the area of the rectangle is

  • [KVPY 2011]

The line $2x + 3y = 12$ meets the $x -$ axis at $A$ and the $y -$ axis at $B$ . The line through $(5, 5)$ perpendicular to $AB$ meets the $x -$ axis, $y -$ axis $\&$ the line $AB$ at $C, D, E$ respectively. If $O$ is the origin, then the area of the $OCEB$ is :

A point moves such that its distance from the point $(4,\,0)$is half that of its distance from the line $x = 16$. The locus of this point is

An equilateral triangle has each of its sides of length $6\,\, cm$ . If $(x_1, y_1) ; (x_2, y_2) \,\, and \,\, (x_3, y_3)$ are its vertices then the value of the determinant,${{\left| {\,\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&1\\{{x_2}}&{{y_2}}&1\\{{x_3}}&{{y_3}}&1\end{array}\,} \right|}^2}$ is equal to :