The experimental data for decomposition of $N _{2} O _{5}$

$\left[2 N _{2} O _{5} \rightarrow 4 NO _{2}+ O _{2}\right]$

in gas phase at $318 \,K$ are given below:

$t/s$ $0$ $400$ $800$ $1200$ $1600$ $2000$ $2400$ $2800$ $3200$
${10^2} \times \left[ {{N_2}{O_5}} \right]/mol\,\,{L^{ - 1}}$ $1.63$ $1.36$ $1.14$ $0.93$ $0.78$ $0.64$ $0.53$ $0.43$ $0.35$

$(i)$ Plot $\left[ N _{2} O _{5}\right]$ against $t$

$(ii)$ Find the half-life period for the reaction.

$(iii)$ Draw a graph between $\log \left[ N _{2} O _{5}\right]$ and $t$

$(iv)$ What is the rate law $?$

$(v)$ Calculate the rate constant.

$(vi)$ Calculate the half-life period from $k$ and compare it with $(ii)$.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$(i)$

$(ii)$ Time corresponding to the concentration, $\frac{1.630 \times 10^{2}}{2} \,mol\, L ^{-1}=81.5 \,mol\, L ^{-1}$ is the half life. From the graph, the half life is obtained as $1450$ $s$

$t(s)$ $10^{2} \times\left[ N _{2} O _{5}\right] / mol\, L ^{-1}$ $\log \left[ N _{2} O _{5}\right]$
$0$ $1.63$ $-1.79$
$400$ $1.36$ $-1.87$
$800$ $1.14$ $-1.94$
$1200$ $0.93$ $-2.03$
$1600$ $0.78$ $-2.11$
$2000$ $0.64$ $-2.19$
$2400$ $0.53$ $-2.28$
$2800$ $0.43$ $-2.73$
$3200$ $0.35$ $-2.46$

$(iv)$ The given reaction is of the first order as the plot, $\log \left[ N _{2} O _{3}\right]_{ v / s } t$ is a straight line. Therefore, the rate law of the reaction is

$(v)$ From the plot, $\log \left[ N _{2} O _{5}\right]$

Slope $=\frac{-2.46-(-1.79)}{3200-0}$

$=\frac{-0.67}{3200}$   $v / s t,$ we obtain

Again, slope of the line of the plot $\log \left[ N _{2} O _{5}\right]_{ v / s } t$ is given by

$-\frac{k}{2.303}$

Therefore, we obtain,

$-\frac{k}{2.303}=-\frac{0.67}{3200}$

$\Rightarrow k=4.82 \times 10^{-4} s ^{-1}$

$(vi)$ Half-life is given by,

$t_{1 / 2}=\frac{0.639}{k}$

$=\frac{0.693}{4.82 \times 10^{-4}} s$

$=1.438 \times 10^{3} \,s$

$=1438 \,s$

928-s37

Similar Questions

Select the rate law for reaction $A + B \longrightarrow C$

Exp $[A]$ $[B]$ Rate
$1$ $0.012$ $0.035$ $0.10$
$2$ $0.024$ $0.070$ $0.80$
$3$ $0.024$ $0.035$ $0.10$
$4$ $0.012$ $0.070$ $0.80$

What is the order of reaction' for $A + B \to C$

Observation $[A]$ $[B]$ Rate of reaction
$1$ $0.1$ $0.1$ $2\times10^{-3}\, mol\, L^{-1}\,sec^{-1}$
$2$ $0.2$ $0.1$ $0.4\times10^{-2}\, mol\, L^{-1}\,sec^{-1}$
$3$ $0.1$ $0.2$ $1.4\times10^{-2}\, mol\, L^{-1}\,sec^{-1}$

Determine the order of reaction on the basis of following data for the reaction $A + B \to C$

Exp. $[A]$ $[B]$ Rate of reaction
$1$ $0.1$ $0.1$ $2 \times {10^{ - 3}}\,mol\,{L^{ - 1}}\,{\sec ^{ - 1}}$
$2$ $0.4$ $0.1$ $0.4 \times {10^{ - 2}}\,mol\,{L^{ - 1}}\,{\sec ^{ - 1}}$
$3$ $0.1$ $0.2$ $1.4 \times {10^{ - 2}}\,mol\,{L^{ - 1}}\,{\sec ^{ - 1}}$

Assertion : The kinetics of the reaction -

$mA + nB + pC \to m' X + n 'Y + p 'Z$

obey the rate expression as $\frac{{dX}}{{dt}} = k{[A]^m}{[B]^n}$.

Reason : The rate of the reaction does not depend upon the concentration of $C$.

  • [AIIMS 2011]

For a certain reaction the expression for half life is $t \propto \frac{1}{{{a^{n - 1}}}}$ then the order of reaction is