The factorisation of $4 x^{2}+8 x+3$ is
$(2 x+1)(2 x+3)$
$(x+1)(x+3)$
$(2 x+2)(2 x+5)$
$(2 x-1)(2 x-3)$
$4 x^{2}+8 x+3=4 x^{2}+6 x+2 x+3$
$=2 x(2 x+3)+1(2 x+3)=(2 x+1)(2 x+3)$
Hence, $(a)$ is the correct answer.
Factorise $: 4 x^{2}+4 x y-3 y^{2}$
Factorise $: x^{3}-x^{2}-17 x-15$
Evaluate
$103 \times 97$
Write the coefficients of $x^{2}$ in each of the following polynomials
$x^{3}+27$
Divide $p(x)=21+10 x+x^{2}$ by $g(x)=2+x$ and find the quotient and the remainder.
Confusing about what to choose? Our team will schedule a demo shortly.