The figure shows a velocity-time graph of a particle moving along a straight line The maximum displacement of the particle is ........ $m$
$33.3$
$23.3$
$18.3$
$0$
A horizontal plane supports a stationary vertical cylinder of radius $R = 1\ m$ and a disc $A$ attached to the cylinder by a horizontal thread $AB$ of length $l_0 = 2\ m$ (seen in figure, top view). An intial velocity ($v_0 = 1\ m/s$) is imparted $AB$ to the disc as shown in figure. .......... $\sec$ long will it move along the plane until it strikes against the cylinder ? (All surface are assumed to be smooth)
Give explanation of position and displacement vectors for particle moving in a plane by giving suitable equations.
The co-ordinates of a particle moving in $x-y$ plane are given by : $\mathrm{x}=2+4 \mathrm{t}, \mathrm{y}=3 \mathrm{t}+8 \mathrm{t}^2 .$ The motion of the particle is :
The figure shows the velocity and the acceleration of a point like body at the initial moment of its motion. The direction and the absolute value of the acceleration remain constant. Find the time when the speed becomes minimum.........$s$ (Given : $a = 4\, m/s^2, v_0 = 40\, m/s, \phi =143^o$)