The following results have been obtained during the kinetic studies of the reaction:

$2 A+B \rightarrow C+D$

Experiment  $[ A ] / mol L ^{-1}$ $[ B ] / mol L ^{-1}$ Initial rate of formation of $D / mol \,L ^{-1} \,min ^{-1}$
$I$ $0.1$ $0.1$ $6.0 \times 10^{-3}$
$II$ $0.3$ $0.2$ $7.2 \times 10^{-2}$
$III$ $0.3$ $0.4$ $2.88 \times 10^{-1}$
$IV$ $0.4$ $0.1$ $2.40 \times 10^{-2}$

Determine the rate law and the rate constant for the reaction.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let the order of the reaction with respect to $A$ be $x$ and with respect to $B$ be $y$

Therefore, rate of the reaction is qiven by

Rate $=k[ A ]^{x}[ B ]^{y}$

According to the question,

$6.0 \times 10^{-3}=k[0.1]^{x}[0.1]^{y}$          ........$(i)$

$7.2 \times 10^{-2}=k[0.3]^{x}[0.2]^{y}$           ..........$(ii)$

$2.88 \times 10^{-1}=k[0.3]^{x}[0.4]^{y}$          .........$(iii)$

$2.40 \times 10^{-2}=k[0.4]^{x}[0.1]^{y}$          ...........$(iv)$

Dividing equation $(iv)$ by $(i)$, we obtain

$\frac{2.40 \times 10^{-2}}{6.0 \times 10^{-3}}=\frac{k[0.4]^{x}[0.1]^{y}}{k[0.1]^{x}[0.1]^{y}}$

$\Rightarrow 4=\frac{[0.4]^{x}}{[0.1]^{x}}$

$ \Rightarrow 4 = {\left( {\frac{{0.4}}{{0.1}}} \right)^x}$

$\Rightarrow(4)^{1}=4^{x}$

$\Rightarrow x=1$

Dividing equation $(iii)$ by $(ii)$, we obtain

$\frac{2.88 \times 10^{-1}}{7.2 \times 10^{-2}}=\frac{k[0.3]^{x}[0.4]^{y}}{k[0.3]^{x}[0.2]^{y}}$

$ \Rightarrow 4 = {\left( {\frac{{0.4}}{{0.2}}} \right)^y}$

$\Rightarrow 4=2^{y}$

$\Rightarrow 2^{2}=2^{y}$

$\Rightarrow y=2$

Therefore, the rate law is

Rate $=k[ A ][ B ]^{2}$

$\Rightarrow \quad k=\frac{\text { Rate }}{[ A ][ B ]^{2}}$

From experiment $I$, we obtain

$k=\frac{6.0 \times 10^{-3} \,mol\, L ^{-1} \,min ^{-1}}{\left(0.1\, mol\, L ^{-1}\right)\left(0.1 \,mol\, L ^{-1}\right)^{2}}$

$=6.0 L ^{2} \,mol ^{-2}\, min ^{-1}$

From experiment $II$, we obtain

$k=\frac{7.2 \times 10^{-2} \,mol \,L ^{-1} \,min ^{-1}}{\left(0.3\, mol\, L ^{-1}\right)\left(0.2 \,mol\, L ^{-1}\right)^{2}}$

$=6.0\, L ^{2}\, mol ^{-2}\, min ^{-1}$

From experiment $III$, we obtain

$k=\frac{2.88 \times 10^{-1}\, mol\, L ^{-1}\, min ^{-1}}{\left(0.3 \,mol\, L ^{-1}\right)\left(0.4\, mol\, L ^{-1}\right)^{2}}$

$=6.0\, L ^{2}\, mol ^{-2}\, min ^{-1}$

From experiment $IV ,$ we obtain

$k=\frac{2.40 \times 10^{-2}\, mol\, L ^{-1} \,min ^{-1}}{\left(0.4\, mol\, L ^{-1}\right)\left(0.1 \,mol\, L ^{-1}\right)^{2}}$

$=6.0\, L ^{2}\, mol ^{-2}\, min ^{-1}$

Therefore, rate constant, $k=6.0 \,L ^{2}\, mol ^{-2}\, min ^{-1}$

Similar Questions

Reaction : $KCl{O_3} + 6FeS{O_4} + 3{H_2}S{O_4} \to $ $KCl + 3F{e_2}{\left( {S{O_4}} \right)_3} + 3{H_2}O$ 

Which is True $(T)$ and False $(F)$ in the following sentence ?

The order of this reaction is $10$.

The rate constant for the reaction, $2{N_2}{O_5} \to 4N{O_2}$ $ + {O_2}$ is $3 \times {10^{ - 5}}{\sec ^{ - 1}}$. If the rate is $2.40 \times {10^{ - 5}}\,mol\,\,litr{e^{{\rm{ - 1}}}}{\sec ^{ - 1}}$. Then the concentration of ${N_2}{O_5}$ (in mol litre $^{-1}$) is

  • [IIT 2000]

The rate of reaction between $A$ and $B$ increases by a factor of  $100,$ when the concentration of $A$ is increased $10$ folds. The order of reaction with respect to $A$ is

The unit of rate constant of second order reaction is usually expressed as

Consider the following single step reaction in gas phase at constant temperature.

$2 \mathrm{~A}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \rightarrow \mathrm{C}_{(\mathrm{g})}$

The initial rate of the reaction is recorded as $r_1$ when the reaction starts with $1.5 \mathrm{~atm}$ pressure of $\mathrm{A}$ and $0.7 \mathrm{~atm}$ pressure of B. After some time, the rate $r_2$ is recorded when the pressure of $C$ becomes $0.5 \mathrm{~atm}$. The ratio $r_1: r_2$ is $\qquad$ $\times 10^{-1}$.

(Nearest integer)

  • [JEE MAIN 2024]