The graph is drawn between the applied force $F$ and the strain $(x)$ for a thin uniform wire. The wire behaves as a liquid in the part
$ab$
$bc$
$cd$
$oa$
Stress vs strain curve for the elastic tissue of the aorta, the large tube (vessel) carrying blood from the heart, will be : [stress is proportional to square of the strain for the elastic tissue of the aorta]
The stress versus strain graphs for wires of two materials $A$ and $B$ are as shown in the figure. If $Y_A$ and $Y_B$ are the Young's modulus of the materials, then
In Column$-I$ there are two graphs and in Column$-II$ whose graph is for this are given. Join them appropriately :
Column $-I$ | Column $-II$ |
$(a)$ image | $(i)$ $A$ is ductile |
$(b)$ image | $(ii)$ $A$ is brittle |
$(iii)$ $B$ is ductile | |
$(iv)$ $B$ is brittle |
The adjacent graph shows the extension $(\Delta l)$ of a wire of length $1m$ suspended from the top of a roof at one end with a load $W$ connected to the other end. If the cross sectional area of the wire is ${10^{ - 6}}{m^2},$ calculate the young’s modulus of the material of the wire
The stress-strain curves for brass, steel and rubber are shown in the figure. The lines $A, B$ and $C$ are for