The velocity of end ' $A$ ' of rigid rod placed between two smooth vertical walls moves with velocity ' $u$ ' along vertical direction. Find out the velocity of end ' $B$ ' of that rod, rod always remains in constant with the vertical walls.
Two equal masses $A$ and $B$ are arranged as shown in the figure. Pulley and string are ideal and there is no friction. Block $A$ has a speed $u$ in the downward direction. The speed of the block $B$ is :-
Two particles $A$ and $B$ are connected by rigid rod $A B$. The rod slides along perpendicular rails as shown here. The velocity of $A$ to the left is $10\; m / s$. What is the velocity of $B$(in $m/s$) when angle $\alpha=60^{\circ}$?
Find velocity of block ' $B$ ' at the instant shown in figure $……..\,m/s$
If block $A$ has a velocity of $0.6\,m / s$ to the right, determine the velocity of block $B$.
Confusing about what to choose? Our team will schedule a demo shortly.