The internuclear distances in $O -O$ bonds for $O_2^+ ; O_2 , O_2^-$ and $O_2^{2-}$ respectively are
$1.30\mathop {\,A}\limits^o ,1.49\,\mathop A\limits^o ,1.12\,\mathop A\limits^o ,1.21\,\mathop A\limits^o $
$1.49\mathop {\,A}\limits^o ,1.21\,\mathop A\limits^o ,1.12\,\mathop A\limits^o ,1.30\,\mathop A\limits^o $
$1.21\mathop {\,A}\limits^o ,1.12\,\mathop A\limits^o ,1.49\,\mathop A\limits^o ,1.30\,\mathop A\limits^o $
$1.12\mathop {\,A}\limits^o ,1.21\,\mathop A\limits^o ,1.30\,\mathop A\limits^o ,1.49\,\mathop A\limits^o $
The correct order in which the $O -O$ bond length increases in the following is
Match List$-I$ with List$-II.$
List$-I$ | List$-II$ |
$(a)$ $Ne _{2}$ | $(i)$ $1$ |
$(b)$ $N _{2}$ | $(ii)$ $2$ |
$(c)$ $F _{2}$ | $(iii)$ $0$ |
$(d)$ $O _{2}$ | $(iv)$ $3$ |
Choose the correct answer from the options given below:
The correct order of bound orders of $C _{2}^{2-}, N _{2}^{2-}$ and $O _{2}^{2-}$ is, respectively.
Use molecular orbital theory to explain why the $\mathrm{Be}_{2}$ Molecule does not exist.
In which of the following pairs the two molecules have identical bond order