Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

The line $2 \mathrm{x}+\mathrm{y}=1$ is tangent to the hyperbola $\frac{\mathrm{x}^2}{\mathrm{a}^2}-\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1$. If this line passes through the point of intersection of the nearest directrix and the $\mathrm{x}$-axis, then the eccentricity of the hyperbola is

A

$1$

B

$2$

C

$3$

D

$4$

(IIT-2010)

Solution

Substituting $\left(\frac{a}{e}, 0\right)$ in $y=-2 x+1$

$0=-\frac{2 a}{e}+1$

$\frac{2 a}{e}=1 $

$a=\frac{e}{2}$

Also, $1=\sqrt{\mathrm{a}^2 \mathrm{~m}^2-\mathrm{b}^2}$

$1=a^2 m^2-b^2$

$1=4 a^2-b^2$

$1=\frac{4 e^2}{4}-b^2$

$\mathrm{b}^2=\mathrm{e}^2-1 \text {. }$

Also, $\mathrm{b}^2=\mathrm{a}^2\left(\mathrm{e}^2-1\right)$

$\therefore \mathrm{a}=1, \mathrm{e}=2$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.