- Home
- Standard 11
- Physics
The magnitude of displacement of a particle moving in a circle of radius $a$ with constant angular speed $\omega$ varies with time $t$ as
$2 a\,\, sin \,\,\omega t$
$2a\,\, sin\,\, \frac{{\omega \,t}}{2}$
$2a \,\,cos\,\, \omega t$
$2a \,\,cos \,\,\frac{{\omega \,t}}{2}$
Solution
If a particle is moving with angular velocity $=\omega$
Its angle of rotation is given by $\omega t$
Now displacement $=$ length of line $A B$
Position vector of a particle is given by
$\vec{R}=i a \cos \omega t+j a \sin \omega t$
$\vec{R}_{0}=a i$
displacement$, \vec{d}=\vec{R}-\vec{R}_{\mathrm{o}}$
$=a(\cos \omega t-1) i+a \sin \omega j$
$d=\sqrt{(a(\cos \omega t-1))^{2}+(a \sin \omega)^{2}}$
$=a \sqrt{2(1-\cos \omega t)}=a \sqrt{2 \times 2(\sin \omega t / 2)^{2}}=2 a \sin \omega t / 2$