Gujarati
Hindi
6.System of Particles and Rotational Motion
hard

The moment of inertia of a solid flywheel about its axis is $0.1\,kg-m^2$. A tangential force of $2\,kg\,wt$. is applied round the circumference of the flyweel with the help of a string and mass arrangement as shown in the figure. If the radius of the wheel is $0.1\,m,$ find the angular acceleration of the solid fly wheel (in $rad/sec^2$)

A

$163.3$

B

$16.3$

C

$81.66$

D

$8.16$

Solution

Suppose a be the linear acceleration of the mass and $T$ the tension in the string.

Hence, $\quad \mathrm{Mg}-\mathrm{T}=\mathrm{Ma}$           $…(1)$

Let $\alpha$ be the angular acceleration of the flywheel. The couple applied to the flywheel is

$\mathrm{I} \alpha=\mathrm{TR} \quad$ or $\quad \mathrm{T}=\frac{\mathrm{I} \alpha}{\mathrm{R}}$            $…(2)$

Now we know that $a=R \alpha$                  $…(3)$

Putting $( 2)$ and $( 3)$ in eq. $(1),$ we get

$\mathrm{Mg}-\frac{\mathrm{I} \alpha}{\mathrm{R}}=\mathrm{MR} \alpha$

$\therefore \quad \alpha=\frac{\mathrm{MgR}}{\mathrm{I}+\mathrm{MR}^{2}}$          $…(4)$

$=\frac{2 \times 9.8 \times 0.1}{0.1+2 \times(0.1)^{2}}=16.33 \mathrm{rad} / \mathrm{sec}^{2}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.