- Home
- Standard 11
- Physics
The motion of planets in the solar system is an example of the conservation of
Mass
Linear momentum
Angular momentum
Energy
Solution

From Kepler's second law of motion, a line joining any planet to the sun sweeps
out equal areas in equal intervals of time.
Let at any instant $t,$ the planet is in position $A.$ Then area swept out be $SA$ is
$\mathrm{dA}=$ area of the curved triangle $SAB$
$\mathrm{d} \mathrm{A}=$ area of the curved triangle $\mathrm{SAB}$
$=\frac{1}{2}(A B \times S A)$
$=\frac{1}{2}(r d \theta \times r)=\frac{1}{2} r^{2} d \theta$
The instantaneous areal speed is
$\left.=\frac{d A}{d t}=\frac{1}{2} r^{2}\left(\frac{d \theta}{d t}\right)\right)=\frac{1}{2} r^{2} \omega$
Let $J$ be angular momentum, $I$ the moment of inertia and m the mass, then
$J=I \omega=m r^{2} \omega$
$=\frac{d A}{d t}=\frac{J}{2 m}=\mathrm{constant}$