- Home
- Standard 11
- Mathematics
8. Sequences and Series
hard
The number of terms of an $A.P.$ is even; the sum of all the odd terms is $24$ , the sum of all the even terms is $30$ and the last term exceeds the first by $\frac{21}{2}$. Then the number of terms which are integers in the $A.P.$ is :
A$4$
B$10$
C$6$
D$8$
(JEE MAIN-2025)
Solution
$a_2+a_4+\ldots+a_n=30$
$a_1+a_3+\ldots+a_{n-1}=24$
$(1)-(2)$
$\left(a_2-a_1\right)+\left(a_4-a_3\right) \ldots\left(a_n-a_{n-1}\right)=6$
$\Rightarrow \frac{n}{2} d=6 \Rightarrow n d=12$
$ a _{ n }- a _1=( n -1) d =\frac{21}{2}$
$\Rightarrow nd – d =\frac{21}{2} \Rightarrow 12-\frac{21}{2}= d$
$\Rightarrow d =\frac{3}{2}, n =8$
$\text { Sum of odd terms }=\frac{4}{2}[2 a+(4-1) 3]=24$
$\Rightarrow a=\frac{3}{2}$
$\text { A.P. } \Rightarrow \frac{3}{2}, 3, \frac{9}{2}, 6, \frac{15}{2}, 9, \frac{21}{2}, 12$
no. of integer terms $=4$
$a_1+a_3+\ldots+a_{n-1}=24$
$(1)-(2)$
$\left(a_2-a_1\right)+\left(a_4-a_3\right) \ldots\left(a_n-a_{n-1}\right)=6$
$\Rightarrow \frac{n}{2} d=6 \Rightarrow n d=12$
$ a _{ n }- a _1=( n -1) d =\frac{21}{2}$
$\Rightarrow nd – d =\frac{21}{2} \Rightarrow 12-\frac{21}{2}= d$
$\Rightarrow d =\frac{3}{2}, n =8$
$\text { Sum of odd terms }=\frac{4}{2}[2 a+(4-1) 3]=24$
$\Rightarrow a=\frac{3}{2}$
$\text { A.P. } \Rightarrow \frac{3}{2}, 3, \frac{9}{2}, 6, \frac{15}{2}, 9, \frac{21}{2}, 12$
no. of integer terms $=4$
Standard 11
Mathematics