The order of the reaction occurring by following mechanism should be
$(i)$ ${A_2} \to A + A$ (fast)
$(ii)$ $A + {B_2} \to AB + B$ (slow)
$(iii)$ $A + B \to $ (fast)
$1\,\frac{1}{2}$
$3\frac{1}{2}$
$2$
None of these
Which of these does not influence the rate of reaction
In the following reaction $A \longrightarrow B + C$, rate constant is $0.001\, Ms^{-1}$. If we start with $1\, M$ of $A$ then concentration of $A$ and $B$ after $10\, minutes$ are respectively
For a reaction, $AB_5 \to AB + 4B$ The rate can be expressed in following ways
$\frac{{ - d[A{B_5}]}}{{dt}} = K[A{B_5}]$ ; $\frac{{d[B]}}{{dt}} = {K_1}[A{B_5}]$
So the correct relation between $K$ and $K_1$ is
The order of a reaction is said to be $ 2 $ with respect to a reactant $X, $ when
For the non-stoichiometric reaction $2A + B \to C + D,$ the following kinetic data were obtained in three separate experiments, all at $298\,K$.
Initial Conc. $(A)$ |
Initial Conc. $(B)$ |
Initial rate of |
$0.1\,M$ | $0.1\,M$ | $1.2 \times 10^{-3}$ |
$0.1\,M$ | $0.2\,M$ | $1.2 \times 10^{-3}$ |
$0.2\,M$ | $0.1\,M$ | $2.4 \times 10^{-3}$ |
For the reaction the rate of formation of $C$ will be