- Home
- Standard 11
- Physics
13.Oscillations
medium
The period of oscillation of a mass $M$ suspended from a spring of negligible mass is $T$. If along with it another mass $M$ is also suspended, the period of oscillation will now be
A
$T$
B
$T/\sqrt 2$
C
$2T$
D
$\sqrt 2T$
Solution
$\mathrm{T}=2 \pi \sqrt{\frac{m}{K}} \quad \therefore \frac{T_{1}}{T_{2}}=\sqrt{\frac{M_{1}}{M_{2}}}$
$\mathrm{T}_{2}=\mathrm{T}_{1} \sqrt{\frac{M_{2}}{M_{1}}}=\mathrm{T}_{1} \sqrt{\frac{2 M}{M}}$
$\mathrm{T}_{2}=\mathrm{T}_{1} \sqrt{2}=\sqrt{2} \mathrm{T}\left(\text { where } \mathrm{T}_{1}=\mathrm{T}\right)$
Standard 11
Physics