13.Oscillations
medium

The period of oscillation of a mass $M$ suspended from a spring of negligible mass is $T$. If along with it another mass $M$ is also suspended, the period of oscillation will now be

A

$T$

B

$T/\sqrt 2$

C

$2T$

D

$\sqrt 2T$

Solution

$\mathrm{T}=2 \pi \sqrt{\frac{m}{K}} \quad \therefore \frac{T_{1}}{T_{2}}=\sqrt{\frac{M_{1}}{M_{2}}}$

$\mathrm{T}_{2}=\mathrm{T}_{1} \sqrt{\frac{M_{2}}{M_{1}}}=\mathrm{T}_{1} \sqrt{\frac{2 M}{M}}$

$\mathrm{T}_{2}=\mathrm{T}_{1} \sqrt{2}=\sqrt{2} \mathrm{T}\left(\text { where } \mathrm{T}_{1}=\mathrm{T}\right)$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.