The period of oscillation of a mass $M$ suspended from a spring of negligible mass is $T$. If along with it another mass $M$ is also suspended, the period of oscillation will now be
$T$
$T/\sqrt 2$
$2T$
$\sqrt 2T$
Consider two identical springs each of spring constant $k$ and negligible mass compared to the mass $M$ as shown. Fig. $1$ shows one of them and Fig. $2$ shows their series combination. The ratios of time period of oscillation of the two $SHM$ is $\frac{ T _{ b }}{ T _{ a }}=\sqrt{ x },$ where value of $x$ is
(Round off to the Nearest Integer)
A mass of $2\,kg$ is attached to the spring of spring constant $50 \,Nm^{-1}$. The block is pulled to a distance of $5 \,cm $ from its equilibrium position at $x= 0$ on a horizontal frictionless surface from rest at $t = 0$. Write the expression for its displacement at anytime $t$.
A spring having a spring constant $‘K’$ is loaded with a mass $‘m’$. The spring is cut into two equal parts and one of these is loaded again with the same mass. The new spring constant is
A mass of $0.2\,kg$ is attached to the lower end of a massless spring of force-constant $200\, N/m,$ the upper end of which is fixed to a rigid support. Which of the following statements is/are true ?
A force of $20\,dyne$ applied to the end of spring increase its length of $1\, mm$, then force constant will be what ?