The proposition $p \rightarrow \sim( p \wedge \sim q )$ is equivalent to
$(\sim p) \vee q$
$q$
$(\sim p) \wedge q$
$(\sim p ) \vee(\sim q )$
The negation of the statement $q \wedge \left( { \sim p \vee \sim r} \right)$
Which of the following is not a statement
Statement $-1 :$ $\sim (p \leftrightarrow \sim q)$ is equivalent to $p\leftrightarrow q $
Statement $-2 :$ $\sim (p \leftrightarrow \sim q)$ s a tautology
The statement $\sim(p\leftrightarrow \sim q)$ is :