- Home
- Standard 12
- Physics
12.Atoms
normal
The radius of the smallest electron orbit in hydrogen-like ion is $(0.51/4 \times 10^{-10})$ metre; then it is
A
hydrogen atom
B
$H^+$
C
$Li^{2+}$
D
$Be^{3+}$
Solution
For hydrogen-like atom, the radius of ${n^{th}}$ orbit is
$r_n^Z = \frac{{{n^2}}}{Z}{r_0}$
Where $\quad \mathrm{r}_{0}=0.51 \times 10^{-10}$ metre
Here, $r_{n}^{z}=\frac{0.51 \times 10^{-10}}{4} $ metre
In the ground state, $n=1$
$\therefore \frac{0.51 \times 10^{-10}}{4} =\frac{1^{2}}{Z} \times 0.51 \times 10^{-10} $
$\therefore \quad Z =4 $
So, the atom is triply ionised beryllium.
Standard 12
Physics
Similar Questions
medium