The rate constant of which of the following reactions is independent of concentration of the reactants ?
First order reactions
Zero order reactions
Second order reactions
All of these
The conversion of $A \to B$ follows second order kinetics. Doubling the concentration of $A$ will increase the rate of formation of $B$ by a factor
The inversion of cane sugar is represented by${C_{12}}{H_{22}}{O_{11}} + {H_2}O \to {C_6}{H_{12}}{O_6} + {C_6}{H_{12}}{O_6}$ It is a reaction of
The rate of the reaction :
$2N_2O_5 \rightarrow 4NO_2 + O_2$ can be written in three ways.
$\frac{-d[N_2O_5 ]}{dt} = k[N_2O_5]$
$\frac{d[NO_2 ]}{dt} = k'[N_2O_5]\,;$ $\frac{d[O_2 ]}{dt} = k"[N_2O_5]$
The relationship between $k$ and $k'$ and betweenk and $k''$ are
Which of the following is correct ?
Assertion : The kinetics of the reaction -
$mA + nB + pC \to m' X + n 'Y + p 'Z$
obey the rate expression as $\frac{{dX}}{{dt}} = k{[A]^m}{[B]^n}$.
Reason : The rate of the reaction does not depend upon the concentration of $C$.