The rates of a certain reaction $(dc/dt)$ at different times are as follows
Time Rate (mole $litre^{-1}\,sec^{ -1}$ )
$0$ $2.8 \times {10^{ - 2}}$
$10$ $2.78 \times {10^{ - 2}}$
$20 $ $2.81 \times {10^{ - 2}}$
$30$ $2.79 \times {10^{ - 2}}$
The reaction is
Zero order
First order
Second order
Third order
What is the molecularity of the following reaction ?
$1.$ $NH _{4} NO _{2( s )} \rightarrow N _{2( g )}+2 H _{2} O$
$2.$ $2 HI \rightarrow H _{2}+ I _{2}$
$3.$ $2 NO + O _{2} \rightarrow 2 NO _{2}$
The reaction $CH _{3} COF + H _{2} O \quad \rightleftharpoons CH _{3} COOH + HF$
Condition $I$ $:$ $\left[ H _{2} O \right]_{0}=1.00 \,M$
$\left[ CH _{3} COF \right]_{0}=0.01 \,M$
Condition $II$ $:$ $\left[ H _{2} O \right]_{0}=0.02 \,M$
$\left[ CH _{3} COF \right]_{0}=0.80 \,M$
Condition - $I$ | Condition - $II$ | ||
Time $min$ |
$\left[ CH _{3} COF \right]$ $M$ |
Time $min$ |
$\left[ H _{2} O \right] \,M$ |
$0$ | $0.01000$ | $0$ | $0.0200$ |
$10$ | $0.00867$ | $10$ | $0.0176$ |
$20$ | $0.00735$ | $20$ | $0.0156$ |
$40$ | $0.00540$ | $40$ | $0.0122$ |
Determine the order of reaction and calculate rate constant.
Half life of a reaction is found to be inversely proportional to the cube of its initial concentration. The order of reaction is
Reaction : $KCl{O_3} + 6FeS{O_4} + 3{H_2}S{O_4} \to $ $KCl + 3F{e_2}{\left( {S{O_4}} \right)_3} + 3{H_2}O$
Which is True $(T)$ and False $(F)$ in the following sentence ?
The order of this reaction is $10$.
The rate of disappearance of $S{O_2}$ in the reaction $2S{O_2} + {O_2} \to 2S{O_3}$ is $1.28 \times {10^{ - 3}}g/sec$ then the rate of formation of $S{O_3}$ is