The ratio of the $A.M.$ and $G.M.$ of two positive numbers $a$ and $b,$ is $m: n .$ Show that $a: b=(m+\sqrt{m^{2}-n^{2}}):(m-\sqrt{m^{2}-n^{2}})$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let the two numbers be $a$ and $b$

$A.M.=\frac{a+b}{2}$ and $G.M.=\sqrt{a b}$

According to the given condition,

$\frac{a+b}{2 \sqrt{a b}}=\frac{m}{n}$

$\Rightarrow \frac{(a+b)^{2}}{4(a b)}=\frac{m^{2}}{n^{2}}$

$\Rightarrow(a+b)^{2}=\frac{4 a b m^{2}}{n^{2}}$

$\Rightarrow(a+b)=\frac{2 \sqrt{a b} m}{n}$         ........$(1)$

Using this in the identity $(a-b)^{2}=(a+b)^{2}-4 a b,$ we obtain

$(a-b)^{2}=\frac{4 a b m^{2}}{n^{2}}-4 a b=\frac{4 a b\left(m^{2}-n^{2}\right)}{n^{2}}$

$\Rightarrow(a-b)=\frac{2 \sqrt{a b} \sqrt{m^{2}-n^{2}}}{n}$       .........$(2)$

Adding $(1)$ and $(2),$ we obtain

$2 a=\frac{2 \sqrt{a b}}{n}(m+\sqrt{m^{2}-n^{2}})$

$\Rightarrow a=\frac{\sqrt{a b}}{n}(m+\sqrt{m^{2}-n^{2}})$

Substituting the value of $a$ in $(1),$ we obtain

$b=\frac{2 \sqrt{a b}}{n} m-\frac{\sqrt{a b}}{n}(m+\sqrt{m^{2}-n^{2}})$

$=\frac{\sqrt{a b}}{n} m-\frac{\sqrt{a b}}{n} \sqrt{m^{2}-n^{2}}$

$=\frac{\sqrt{a b}}{n}(m-\sqrt{m^{2}-n^{2}})$

$\therefore a:b = \frac{a}{b} = \frac{{\frac{{\sqrt {ab} }}{n}(m + \sqrt {{m^2} - {n^2}} )}}{{\frac{{\sqrt {ab} }}{n}(m - \sqrt {{m^2} - {n^2}} )}} = \frac{{(m + \sqrt {{m^2} - {n^2}} )}}{{(m - \sqrt {{m^2} - {n^2}} )}}$

Thus, $a: b=(m+\sqrt{m^{2}-n^{2}}):(m-\sqrt{m^{2}-n^{2}})$

Similar Questions

If $a,\;b,\;c$ be in $A.P.$ and $b,\;c,\;d$ be in $H.P.$, then

Let the range of the function

$f(x)=\frac{1}{2+\sin 3 x+\cos 3 x}, x \in \operatorname{IR} \text { be }[a, b] .$ If $\alpha$ and $\beta$ are respectively the $A.M.$ and the $G.M.$ of a and $b$, then $\frac{\alpha}{\beta}$ is equal to :

  • [JEE MAIN 2024]

If arithmetic mean of two positive numbers is $A$, their geometric mean is $G$ and harmonic mean is $H$, then $H$ is equal to

If the $A.M., G.M.$ and $H.M.$ between two positive numbers $a$ and $b$ are equal, then

If ${\log _x}y,\;{\log _z}x,\;{\log _y}z$ are in $G.P.$ $xyz = 64$ and ${x^3},\;{y^3},\;{z^3}$ are in $A.P.$, then