The reaction ${N_2}{O_5}$ (in $CCl_4$ solution) $ \to 2N{O_2}$ (solution) $ + \frac{1}{2}{O_2}(g)$ is of first order in ${N_2}{O_5}$ with rate constant $6.2 \times {10^{ - 1}}{s^{ - 1}}.$ What is the value of rate of reaction when $[{N_2}{O_5}] = 1.25\,mole\,{l^{ - 1}}$
$7.75 \times {10^{ - 1}}\,mole\,{l^{ - 1}}{s^{ - 1}}$
$6.35 \times {10^{ - 3}}\,mole\,{l^{ - 1}}{s^{ - 1}}$
$5.15 \times {10^{ - 5}}\,mole\,{l^{ - 1}}{s^{ - 1}}$
$3.85 \times {10^{ - 1}}\,mole\,{l^{ - 1}}\,{s^{ - 1}}$
The experimental data for the reaction $2A + {B_2} \to 2AB$ isThe rate equation for the above data is
Exp. |
$[A]_0$ |
$[B]_0$ |
Rate (mole $s^{-1}$) |
$(1)$ |
$0.50$ |
$0.50$ |
$1.6 \times {10^{ - 4}}$ |
$(2)$ |
$0.50$ |
$1.00$ |
$3.2 \times {10^{ - 4}}$ |
$(3)$ |
$1.00$ |
$1.00$ |
$3.2 \times {10^4}$ |
Select the incorrect option :
Which of the following rate laws has an overall order of $0.5$ for reaction involving substances $x$, $y$ and $z$
When a reaction is progressing
Assuming the reaction
$2NO(g) + Cl_2(g) \longrightarrow 2NOCl(g)$
occurs in a single elementary step, we can say that