The reaction $2{N_2}{O_5}$ $\rightleftharpoons$ $2{N_2}{O_4} + {O_2}$ is
Bimolecular and second order
Unimolecular and first order
Bimolecular and first order
Bimolecular and zero order
The rate of a gaseous reaction is given by the expression $K\,[A]\,[B]$. If the volume of the reaction vessel is suddenly reduced to $1/4^{th} $ of the initial volume, the reaction rate relating to original rate will be
Differential form of the rate equation is
$\frac{{dx}}{{dt}} = k\left[ P \right]{\left[ Q \right]^{0.5}}{\left[ R \right]^{0.5}}$
Which statement about the above equation is wrong?
For the reaction
$2H_2 + 2NO \to N_2 + 2H_2O$
the following mechanism has been proposed
$(i)$ $2NO \rightleftharpoons N_2O_2\,$ (fast)
$(ii)$ $N_2O_2 + H_2 \xrightarrow{{{k_2}}} N_2O + H_2O\,$ (slow)
$(iii)$ $N_2O + H_2 \to N_2 + H_2O\,$ (fast)
then what will be the rate law of this reaction ?
For a reaction $\mathrm{A} \xrightarrow{\mathrm{K}_4} \mathrm{~B} \xrightarrow{\mathrm{K}_2} \mathrm{C}$
If the rate of formation of $B$ is set to be zero then the concentration of $B$ is given by :
For the reaction,
$2{N_2}{O_5}\, \to \,4N{O_2}\, + \,{O_2}$
the rate of reaction is