The remainder obtained when the polynomial $1 + x + {x^3} + {x^9} + {x^{27}} + {x^{81}} + {x^{243}}$ is divided by $x - 1$ is
$3$
$5$
$7$
$11$
(c) Putting $x = 1$, remainder $= 7$
If the remainders of the polynomial $f(x)$ when divided by $x + 1,\,x – 2,\,x + 2$ are $6, 3, 15$ then the remainder of $f(x)$ when divided by $(x + 1)\,(x + 2)\,(x – 2)$ is
If ${{3x + a} \over {{x^2} – 3x + 2}} = {A \over {(x – 2)}} – {{10} \over {x – 1}}$, then
${{(x – a)(x – b)} \over {(x – c)(x – d)}} = {A \over {x – c}} – {B \over {(x – d)}} + C$, then $C =$
If ${1 \over {x(x + 1)\,(x + 2)….(x + n)}} = {{{A_0}} \over x} + {{{A_1}} \over {x + 1}} + {{{A_2}} \over {x + 2}} + …. + {{{A_n}} \over {x + n}}$ then ${A_r} = $
If ${{ax – 1} \over {(1 – x + {x^2})\,(2 + x)}} = {x \over {1 – x + {x^2}}} – {1 \over {2 + x}}$, then $a = $
Confusing about what to choose? Our team will schedule a demo shortly.