3 and 4 .Determinants and Matrices
easy

The roots of the equation $\left| {\,\begin{array}{*{20}{c}}{1 + x}&1&1\\1&{1 + x}&1\\1&1&{1 + x}\end{array}\,} \right| = 0$   are

A

$0, -3$

B

$0, 0, -3$

C

$0, 0, 0, -3$

D

None of these

Solution

(b) $\left| {\,\begin{array}{*{20}{c}}{1 + x}&1&1\\1&{1 + x}&1\\1&1&{1 + x}\end{array}\,} \right|\, = \,0$

$ \Rightarrow $$\left| {\,\begin{array}{*{20}{c}}
{3 + x}&0&1\\
{3 + x}&x&1\\
{3 + x}&{ – x}&{1 + x}
\end{array}\,} \right|\, = \,0$, $\left( \begin{array}{l}{C_1} \to {C_1} + {C_2} + {C_3}\\{C_2} \to {C_2} – {C_3}\end{array} \right)$

$ \Rightarrow $ $(x + 3)\,\left| {\,\begin{array}{*{20}{c}}1&0&1\\1&x&1\\1&{ – x}&{1 + x}\end{array}\,} \right|\, = 0$

$ \Rightarrow $ $(x + 3)\,\left| {\,\begin{array}{*{20}{c}}1&0&1\\0&x&0\\0&{ – x}&x\end{array}\,} \right|\, = 0$, $\left( \begin{array}{l}{R_2} \to {R_2} – {R_1}\\{R_3} \to {R_3} – {R_1}\end{array} \right)$

$ \Rightarrow $ $(x + 3){x^2} = 0 \Rightarrow x = 0,\,0,\, – 3$.

Trick : Obviously the equation is of degree three, therefore it must have three solutions.

So check for option $ (b).$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.