- Home
- Standard 11
- Mathematics
7.Binomial Theorem
normal
The sum of last eigth coefficients in the expansion of $(1 + x)^{15}$ is :-
A
$2^{15}$
B
$2^{14}$
C
$2^{16}$
D
$2^8$
Solution
Sum of last eight coefficient are
${\rm{S}} = {\,^{15}}{{\rm{C}}_8} + {\,^{15}}{{\rm{C}}_9} + {\,^{15}}{{\rm{C}}_{10}} + \ldots . + {\,^{15}}{{\rm{C}}_{15}}$ ….$(1)$
${\rm{S}} = {\,^{15}}{{\rm{C}}_7} + {\,^{15}}{{\rm{C}}_6} + {\,^{15}}{{\rm{C}}_5} + \ldots . + {\,^{15}}{{\rm{C}}_0}$ …$(2)$
$\left\{ {{\rm{ We know that}}{{\rm{ }}^{15}}{{\rm{C}}_8} = {\,^{15}}{{\rm{C}}_7}} \right\}$
$e q^{n}(1)+(2)$
$2{\rm{S}} = {\,^{15}}{{\rm{C}}_0} + {\,^{15}}{{\rm{C}}_1} + {\,^{15}}{{\rm{C}}_2} + \ldots .{\,^{15}}{{\rm{C}}_{15}}$
$\Rightarrow 2 S=2^{15} \Rightarrow S=2^{14}$
Standard 11
Mathematics