The sum of last eigth coefficients in the expansion of $(1 + x)^{15}$ is :-
$2^{15}$
$2^{14}$
$2^{16}$
$2^8$
If $\frac{1}{n+1}{ }^n C_n+\frac{1}{n}{ }^n C_{n-1}+\ldots+\frac{1}{2}{ }^{ n } C _1+{ }^{ n } C _0=\frac{1023}{10}$ then $n$ is equal to
$\sum_{\substack{i, j=0 \\ i \neq j}}^{n}{ }^{n} C_{i}{ }^{n} C_{j}$ is equal to
Coefficient of $x^{64}$ in the expansion of $(x - 1)^2(x - 2)^3(x - 3)^4(x - 4)^5 .... (x - 10)^{11}$
If ${ }^{20} \mathrm{C}_{\mathrm{r}}$ is the co-efficient of $\mathrm{x}^{\mathrm{r}}$ in the expansion of $(1+x)^{20}$, then the value of $\sum_{r=0}^{20} r^{2}\,\,{ }^{20} C_{r}$ is equal to :
The coefficient of $x^r (0 \le r \le n - 1)$ in the expression :
$(x + 2)^{n-1} + (x + 2)^{n-2}. (x + 1) + (x + 2)^{n-3} . (x + 1)^2; + ...... + (x + 1)^{n-1}$ is :