7.Binomial Theorem
hard

The sum of the co-efficients of all odd degree terms in the expansion of  ${\left( {x + \sqrt {{x^3} - 1} } \right)^5} + {\left( {x - \sqrt {{x^3} - 1} } \right)^5},\left( {x > 1} \right)$ 

A

$0$

B

$1$

C

$2$

D

$-1$

(JEE MAIN-2018)

Solution

$(C)$ Since we know that,

${(x+a)^{5}+(x-a)^{5}}$

${=2\left[^{5} C_{0} x^{5}+^{5} C_{2} x^{3} \cdot a^{2}+^{5} C_{4} x \cdot a^{4}\right]}$

$\therefore \quad(x+\sqrt{x^{3}-1})^{5}+(x-\sqrt{x^{3}-1})^{5}$

$=2\left[^{5} \mathrm{C}_{0} \mathrm{x}^{5}+^{5} \mathrm{C}_{2} \mathrm{x}^{3}\left(\mathrm{x}^{3}-1\right)+^{5} \mathrm{C}_{4} \mathrm{x}\left(\mathrm{x}^{3}-1\right)^{2}\right]$

$\Rightarrow 2\left[x^{5}+10 x^{6}-10 x^{3}+5 x^{7}-10 x^{4}+5 x\right]$

$\therefore $ Sum of coefficients of odd degree terms $=2$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.