- Home
- Standard 11
- Mathematics
7.Binomial Theorem
hard
The sum of the co-efficients of all odd degree terms in the expansion of ${\left( {x + \sqrt {{x^3} - 1} } \right)^5} + {\left( {x - \sqrt {{x^3} - 1} } \right)^5},\left( {x > 1} \right)$
A
$0$
B
$1$
C
$2$
D
$-1$
(JEE MAIN-2018)
Solution
$(C)$ Since we know that,
${(x+a)^{5}+(x-a)^{5}}$
${=2\left[^{5} C_{0} x^{5}+^{5} C_{2} x^{3} \cdot a^{2}+^{5} C_{4} x \cdot a^{4}\right]}$
$\therefore \quad(x+\sqrt{x^{3}-1})^{5}+(x-\sqrt{x^{3}-1})^{5}$
$=2\left[^{5} \mathrm{C}_{0} \mathrm{x}^{5}+^{5} \mathrm{C}_{2} \mathrm{x}^{3}\left(\mathrm{x}^{3}-1\right)+^{5} \mathrm{C}_{4} \mathrm{x}\left(\mathrm{x}^{3}-1\right)^{2}\right]$
$\Rightarrow 2\left[x^{5}+10 x^{6}-10 x^{3}+5 x^{7}-10 x^{4}+5 x\right]$
$\therefore $ Sum of coefficients of odd degree terms $=2$
Standard 11
Mathematics