The sum of the co-efficients of all odd degree terms in the expansion of  ${\left( {x + \sqrt {{x^3} - 1} } \right)^5} + {\left( {x - \sqrt {{x^3} - 1} } \right)^5},\left( {x > 1} \right)$ 

  • [JEE MAIN 2018]
  • A

    $0$

  • B

    $1$

  • C

    $2$

  • D

    $-1$

Similar Questions

The sum of coefficients of integral power of $x$ in the binomial expansion ${\left( {1 - 2\sqrt x } \right)^{50}}$ is :

  • [JEE MAIN 2015]

The sum of the coefficients in the expansion of ${(1 + x - 3{x^2})^{3148}}$ is

If $\sum\limits_{ k =1}^{31}\left({ }^{31} C _{ k }\right)\left({ }^{31} C _{ k -1}\right)-\sum\limits_{ k =1}^{30}\left({ }^{30} C _{ k }\right)\left({ }^{30} C _{ k -1}\right)=\frac{\alpha(60 !)}{(30 !)(31 !)}$

Where $\alpha \in R$, then the value of $16 \alpha$ is equal to

  • [JEE MAIN 2022]

If $C_r= ^{100}{C_r}$ , then $1.C^2_0 - 2.C^2_1 + 3.C^2_3 - 4.C^2_0 + 5.C^2_4 - .... + 101.C^2_{100}$ is equal to

If ${\sum\limits_{i = 1}^{20} {\left( {\frac{{{}^{20}{C_{i - 1}}}}{{{}^{20}{C_i} + {}^{20}{C_{i - 1}}}}} \right)} ^3}\, = \frac{k}{{21}}$, then $k$ equals

  • [JEE MAIN 2019]