Gujarati
8. Sequences and Series
medium

The sum to infinity of the following series $2 + \frac{1}{2} + \frac{1}{3} + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + \frac{1}{{{2^3}}} + \frac{1}{{{3^3}}} + ........$, will be

A

$3$

B

$4$

C

$7/2$

D

$9/2$

Solution

(c) Given series
= $2 + \frac{1}{2} + \frac{1}{3} + \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + \frac{1}{{{2^3}}} + \frac{1}{{{3^3}}} + …….\infty $

$ = \left( {1 + \frac{1}{2} + \frac{1}{{{2^2}}} + \frac{1}{{{2^3}}} + ……\infty } \right)$
+ $\left( {1 + \frac{1}{3} + \frac{1}{{{3^2}}} + \frac{1}{{{3^3}}} + ……\infty } \right)$

$ = \left( {\frac{1}{{1 – (1/2)}}} \right) + \left( {\frac{1}{{1 – (1/3)}}} \right) = 2 + \frac{3}{2} = \frac{7}{2}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.