- Home
- Standard 11
- Physics
10-2.Transmission of Heat
normal
The two ends of a rod of length $L$ and a uniform cross-sectional area $A$ are kept at two temperatures $T _{1}$ and $T _{2}\left( T _{1} > T _{2}\right) .$ The rate of heat transfer, $\frac{ dQ }{ dt }$ through the rod in a steady state is given by
A
$\frac{ dQ }{ dt }=\frac{ k \left( T _{1}- T _{2}\right)}{ LA }$
B
$\frac{ dQ }{ dt }={kLA}\left( T _{1}- T _{2}\right)$
C
$\frac{ dQ }{ dt }=\frac{ kA \left( T _{1}- T _{2}\right)}{ L }$
D
$\frac{ dQ }{ dt }=\frac{ kL \left( T _{1}- T _{2}\right)}{ A }$
Solution
The rate of heat transfer through the rod in a steady state is,
$\frac{ dQ }{ dt }=\frac{ kA \left( T _{1}- T _{2}\right)}{ L }$
Standard 11
Physics
Similar Questions
normal
normal