3.Trigonometrical Ratios, Functions and Identities
easy

$\frac{{\cot 54^\circ }}{{\tan 36^\circ }} + \frac{{\tan 20^\circ }}{{\cot 70^\circ }}$ =

A

$2$

B

$3$

C

$1$

D

$0$

Solution

(a) $\tan (90^\circ – \theta ) = \cot \theta ,\;\cot (90^\circ – \theta ) = \tan \theta .$

Therefore $\frac{{\cot 54^\circ }}{{\tan 36^\circ }} + \frac{{\tan 20^\circ }}{{\cot 70^\circ }}$

$ = \frac{{\cot 54^\circ }}{{\tan (90^\circ – 54^\circ )}} + \frac{{\tan 20^\circ }}{{(\cot 90^\circ – 20^\circ )}}$

$\frac{{\cot 54^\circ }}{{\cot 54^\circ }} + \frac{{\tan 20^\circ }}{{\tan 20^\circ }} = 1 + 1 = 2$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.