8. Introduction to Trigonometry
medium

The value of the expression

$\left[\operatorname{cosec}\left(75^{\circ}+\theta\right)-\sec \left(15^{\circ}-\theta\right)-\tan \left(55^{\circ}+\theta\right)+\right.\left.\cot \left(35^{\circ}-\theta\right)\right]$ is

A

$-1$

B

$1$

C

$0$

D

$\frac{3}{2}$

Solution

Given, expression $=\operatorname{cosec}\left(75^{\circ}+0\right)-\sec \left(15^{\circ}-0\right)-\tan \left(55^{\circ}+0\right)+\cot \left(35^{\circ}-0\right)$

$=\operatorname{cosec}\left[90^{\circ}-\left(15^{\circ}-0\right)\right]-\sec \left(15^{\circ}-0\right)-\tan \left(55^{\circ}+0\right)+\cot \left(90^{\circ}-\left(55^{\circ}+0\right)\right\}$

$=\sec \left(15^{\circ}-0\right)-\sec \left(15^{\circ}-0\right)-\tan \left(55^{\circ}+0\right)+\tan \left(55^{\circ}+0\right)$

$\left[\therefore \operatorname{cosec}\left(90^{\circ}-0\right)=\sec 0\right.$ and $\left.\cot \left(90^{\circ}-0\right)=\tan 0\right]$

$=0$

Hence, the required value of the given expression is $0 .$

Standard 10
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.