The values of $x$ and $y$ for which vectors $\vec A = \left( {6\hat i + x\hat j - 2\hat k} \right)$ and $\vec B = \left( {5\hat i - 6\hat j - y\hat k} \right)$ may be parallel are

  • A

    $x = 0$, $y = \frac{2}{3}$

  • B

    $x =  - \frac{{36}}{5},y = \frac{5}{3}$

  • C

    $x =  - \frac{{15}}{3},y = \frac{{23}}{5}$

  • D

    $x = \frac{{36}}{5},y = \frac{{15}}{4}$

Similar Questions

Explain resolution of vector in two dimension. Explain resolution of vector in its perpendicular components.

Find the magnitude of the unknown forces $X$ and $Y$ if sum of all forces is zero

The vector projection of a vector $3\hat i + 4\hat k$ on $Y-$axis is

Two forces $P + Q$ and $P -Q$ make angle $2 \alpha$ with each other and their  resultant make $\theta$ angle with bisector of angle between them. Then :

A person pushes a box kept on a horizontal surface with force of $100\,N$ . In unit vector notation force $\vec F$ can be expressed as ?