Gujarati
Hindi
3-1.Vectors
medium

The values of $x$ and $y$ for which vectors $\vec A = \left( {6\hat i + x\hat j - 2\hat k} \right)$ and $\vec B = \left( {5\hat i - 6\hat j - y\hat k} \right)$ may be parallel are

A$x = 0$, $y = \frac{2}{3}$
B$x =  - \frac{{36}}{5},y = \frac{5}{3}$
C$x =  - \frac{{15}}{3},y = \frac{{23}}{5}$
D$x = \frac{{36}}{5},y = \frac{{15}}{4}$

Solution

For vectors to be parallel, ratio of coefficients should be same.
$\therefore \quad \frac{6}{5}=\frac{x}{-6}=\frac{-2}{-y}$
Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.