The variance of $20$ observation is $5$ . If each observation is multiplied by $2$ , then the new variance of the resulting observations, is
$5$
$10$
$20$
$40$
If both the means and the standard deviation of $50$ observations $x_1, x_2, ………, x_{50}$ are equal to $16$ , then the mean of $(x_1 - 4)^2, (x_2 - 4)^2, …., (x_{50} - 4)^2$ is
The mean and standard deviation of $20$ observations are found to be $10$ and $2$ respectively. On rechecking, it was found that an observation $8$ was incorrect. Calculate the correct mean and standard deviation in each of the following cases:
If it is replaced by $12$
Let $X$ be a random variable, and let $P(X=x)$ denote the probability that $X$ takes the value $x$. Suppose that the points $(x, P(X=x)), x=0,1,2,3,4$, lie on a fixed straight line in the $x y$-plane, and $P(X=x)=0$ for all $x \in R$ $\{0,1,2,3,4\}$. If the mean of $X$ is $\frac{5}{2}$, and the variance of $X$ is $\alpha$, then the value of $24 \alpha$ is. . . . .
If each of the observation $x_{1}, x_{2}, \ldots ., x_{n}$ is increased by $'a'$ where $a$ is a negative or positive number, show that the variance remains unchanged.
If $\mathop \sum \limits_{i = 1}^9 \left( {{x_i} - 5} \right) = 9$ and $\mathop \sum \limits_{i = 1}^9 {\left( {{x_i} - 5} \right)^2} = 45,$ then the standard deviation of the $9$ items ${x_1},{x_2},\;.\;.\;.\;,{x_9}$ is :