The velocities of $A$ and $B$ are marked in the figure. The velocity of block $C$ is  ......... $m/s$ (assume that the pulleys are ideal and string inextensible)

22-268

  • A

    $5$

  • B

    $2 $

  • C

    $3$

  • D

    $4 $

Similar Questions

The boxes of masses $2\, {kg}$ and $8\, {kg}$ are connected by a massless string passing over smooth pulleys. Calculate the time taken by box of mass $8\; {kg}$ to strike the ground starting from rest. (use $\left.{g}=10\, {m} / {s}^{2}\right)$ (in ${s}$)

  • [JEE MAIN 2021]

Imagine the situation in which the given arrangement is placed inside a trolley that can move only in the horizontal direction, as shown in figure. If the trolley is accelerated horizontally along the positive $x$ -axis with $a_0$, then If $a_{min}$ and $a_{max}$ are the minimum and maximum values of $a_0$ for which the blocks remain stationary with respect to the surface, then identify the correct statements

In the figure, mass of a ball is $\frac{9}{5}$ times mass of the rod. Length of rod is $1 \,m$. The level of ball is same as rod level. Find out time taken by the ball to reach at upper end of rod. (in $S$)

  • [AIIMS 2018]

The end $B$ of the rod $AB$ which makes angle $\theta$ with the floor is being pulled with, a constant velocity $v_0$ as shown. The length of the rod is $l.$ At the instant when $\theta = 37^o $ then

Two particles $A$ and $B$ are connected by rigid rod $A B$. The rod slides along perpendicular rails as shown here. The velocity of $A$ to the left is $10\; m / s$. What is the velocity of $B$(in $m/s$) when angle $\alpha=60^{\circ}$?

  • [AIPMT 1998]