There are two radionuclei $A$ and $B.$ $A$ is an alpha emitter and $B$ is a beta emitter. Their distintegration constants are in the ratio of $1 : 2.$ What should be the ratio of number of atoms of two at time $t = 0$ so that probabilities of getting $\alpha$ and $\beta$ particles are same at time $t = 0.$
$2 : 1$
$1 : 2$
$e$
$e^{-1}$
The number of beta particles emitted by a radioactive substance is twice the number of alpha particles emitted by it. The resulting daughter is an
An accident in a nuclear laboratory resulted in deposition of a certain amount of radioactive material of half-life $18$ days inside the laboratory. Tests revealed that the radiation was $64$ times more than the permissible level required for safe operation of the laboratory. What is the minimum number of days after which the laboratory can be considered safe for use?
At time $t=0$, a material is composed of two radioactive atoms ${A}$ and ${B}$, where ${N}_{{A}}(0)=2 {N}_{{B}}(0)$ The decay constant of both kind of radioactive atoms is $\lambda$. However, A disintegrates to ${B}$ and ${B}$ disintegrates to ${C}$. Which of the following figures represents the evolution of ${N}_{{B}}({t}) / {N}_{{B}}(0)$ with respect to time $t$ ?
${N}_{{A}}(0)={No} . \text { of } {A} \text { atoms at } {t}=0$
${N}_{{B}}(0)={No} . \text { of } {B} \text { atoms at } {t}=0$
A radioactive nucleus $A$ has a single decay mode with half-life $\tau_A$. Another radioactive nucleus $B$ has two decay modes $1$ and $2$. If decay mode $2$ were absent, the half-life of $B$ would have been $\tau_A / 2$. If decay mode $1$ were absent, the half-life of $B$ would have been $3 \tau_A$. If the actual half life of $B$ is $\tau_B$, then the ratio $\tau_B / \tau_A$ is
If half life of a radioactive element is $3\, hours$, after $9\, hours$ its activity becomes