Three bars having length $l, 2l$ and $3l$ and area of cross-section $A, 2 A$ and $3 A$ are joined rigidly end to end. Compound rod is subjected to a stretching force $F$. The increase in length of rod is (Young's modulus of material is $Y$ and bars are massless)
$\frac{13 F l}{2 A Y}$
$\frac{F l}{A Y}$
$\frac{3 F l}{A Y}$
$\frac{9 F l}{A Y}$
What must be the lengths of steel and copper rods at $0^o C$ for the difference in their lengths to be $10\,cm$ at any common temperature? $(\alpha_{steel}=1.2 \times {10^{-5}} \;^o C^{-1})$ and $(\alpha_{copper} = 1.8 \times 10^{-5} \;^o C^{-1})$
Two identical solid balls, one of ivory and the other of wet-clay are dropped from the same height on the floor. Which one will rise to a greater height after striking the floor and why ?
A copper wire of length $2.2 \;m$ and a steel wire of length $1.6\; m ,$ both of diameter $3.0 \;mm ,$ are connected end to end. When stretched by a load, the net elongation is found to be $0.70 \;mm$. Obtain the load applied in $N$.
A wire of length $L$ and radius $r$ is clamped rigidly at one end. When the other end of the wire is pulled by a force $f$ its length increases by $l$. Another wire of the same material of length $2L$ and radius $2r$ is pulled by a force $2f$. Then find the increase in length of this wire.
In nature the failure of structural members usually result from large torque because of twisting or bending rather than due to tensile or compressive strains. This process of structural breakdown is called buckling and in cases of tall cylindrical structures like trees, the torque is caused by its own weight bending the structure. Thus, the vertical through the centre of gravity does not fall withinthe base. The elastic torque caused because of this bending about the central axis of the tree is given by $\frac{{Y\pi {r^4}}}{{4R}}$ $Y$ is the Young’s modulus, $r$ is the radius of the trunk and $R$ is the radius of curvature of the bent surface along the height of the tree containing the centre of gravity (the neutral surface). Estimate the critical height of a tree for a given radius of the trunk.