Gujarati
Hindi
1. Electric Charges and Fields
normal

Three identical uncharged metal spheres are at the vertices of an equilateral triangle. One at a time, a small sphere is connected by a conducting wire with a large metal sphere that is charged. The center of the large sphere is in the straight line perpendicular to the plane of equilateral triangle and passing through its centre (see figure). As a result, the first small sphere acquires charge $q_1$ and second charge $q_2 (q_2 < q_1)$ . The charge that the third sphere $q_3$ will acquire is (Assume $l >> R$ , $l >> r$ , $d >> R$ , $d >> r$ )

A

$\frac{{q_1^2}}{{{q_2}}}$

B

$\frac{{q_2^2}}{{{q_1}}}$

C

$\sqrt {{q_1}{q_2}} $

D

$\frac{{{q_1} + {q_2}}}{2}$

Solution

$\frac{\mathrm{q}_{1}}{\mathrm{r}}=\frac{\mathrm{Q}^{\prime}}{\mathrm{R}}$

$\mathrm{q}_{1}+\mathrm{Q}^{\prime}=\mathrm{Q}$

$Q^{\prime}\left(\frac{r}{R}+1\right)=Q$

$Q^{\prime}=\frac{Q R}{R+r}, q_{1}=\frac{Q r}{R+r}$

Similarly $Q^{\prime \prime}=\frac{Q R^{2}}{(R+r)^{2}}, \quad q_{2}=\frac{Q r R}{(R+r)^{2}}$

Similarly $\quad \mathrm{q}_{3}=\frac{\mathrm{QrR}^{2}}{(\mathrm{R}+\mathrm{r})^{3}}$

$\frac{\mathrm{q}_{2}^{2}}{\mathrm{q}_{1}}=\frac{\left[\frac{\mathrm{QrR}}{(\mathrm{R}+\mathrm{r})^{2}}\right]^{2}}{\left(\frac{\mathrm{Qr}}{\mathrm{R}+\mathrm{r}}\right)}=\frac{\mathrm{QR}^{2} \mathrm{r}}{(\mathrm{R}+\mathrm{r})^{3}}=\mathrm{q}_{3}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.