Three point charges are placed at the corners of an equilateral triangle. Assuming only electrostatic forces are acting

  • A

    The system can never be in equilibrium

  • B

    The system will be in equilibrium if the charges rotate about the centre of the triangle

  • C

    The system will be in equilibrium if the charges have different magnitudes and different signs

  • D

    The system will be in equilibrium if the charges have the same magnitudes but different signs

Similar Questions

As shown in the figure. a configuration of two equal point charges $\left( q _0=+2 \mu C \right)$ is placed on an inclined plane. Mass of each point charge is $20\,g$. Assume that there is no friction between charge and plane. For the system of two point charges to be in equilibrium (at rest) the height $h = x \times 10^{-3}\,m$ The value of $x$ is $..........$.(Take $\left.\frac{1}{4 \pi \varepsilon_0}=9 \times 10^9\,Nm ^2 C ^{-2}, g=10\,ms ^{-1}\right)$

  • [JEE MAIN 2023]

An infinite number of charges, each of charge $1 \,\mu C$ are placed on the $x$-axis with co-ordinates $x = 1, 2,4, 8, ....\infty$. If a charge of $1\, C$ is kept at the origin, then what is the net force acting on $1\, C$ charge....$N$

Three equal charges $+q$ are placed at the three vertices of an equilateral triangle centred at the origin. They are held in equilibrium by a restoring force of magnitude $F(r)=k r$ directed towards the origin, where $k$ is a constant. What is the distance of the three charges from the origin?

  • [KVPY 2010]

Two pith balls carrying equal charges are suspended from a common point by strings of equal length, the equilibrium separation between them is $r.$ Now the strings are rigidly clamped at half the height. The equilibrium separation between the balls now become

  • [AIPMT 2013]

Two small metal balls of different masses $m_1$ and $m_2$ are connected by strings of equal length to a fixed point. When the balls are given equal charges, the angles that the two strings make with the vertical are $30^{\circ}$ and $60^{\circ}$, respectively. The ratio $m_1 / m_2$ is close to

  • [KVPY 2015]