6.Permutation and Combination
normal

Total number of $3$ letter words that can be formed from the letters of the word $'SAHARANPUR'$ is equal to

A

$210$

B

$237$

C

$247$

D

$227$

Solution

$\mathrm{S}^{1} \mathrm{A}^{3} \mathrm{H}^{1} \mathrm{R}^{2} \mathrm{N}^{1} \mathrm{P}^{1} \mathrm{U}^{1}$

$3$ alike $+3$ different $+2$ alike, $1$ different

${\,^1}{{\rm{C}}_1} \times \frac{{3!}}{{3!}} + {\,^7}{{\rm{C}}_3} \times 3! + {\,^2}{{\rm{C}}_1} \times {\,^6}{{\rm{C}}_1} \times \frac{{3!}}{{2!}}$

$1+210+36=247$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.