Two blocks $A$ and $B$ of mass $m$ and $2\, m$ respectively are connected by a massless spring of force constant $k$. They are placed on a smooth horizontal plane. Spring is stretched by an amount $x$ and then released. The relative velocity of the blocks when the spring comes to its natural length is :-

  • A

    $x\sqrt{\frac{3k}{2m}}$

  • B

    $x\sqrt{\frac{2k}{3m}}$

  • C

    $x\sqrt{\frac{2k}{m}}$

  • D

    $x\sqrt{\frac{3k}{m}}$

Similar Questions

A bullet of mass $m$ strikes a block of mass $M$ connected to a light spring of stiffness $k,$ with a speed $v_0.$ If the bullet gets embedded in the block then, the maximum compression in the spring is

A toy gun fires a plastic pellet with a mass of $0.5\  g$. The pellet is propelled by a spring with a spring constant of $1.25\  N/cm$, which is compressed $2.0\  cm$ before firing. The plastic pellet travels horizontally $10\  cm$ down the barrel (from its compressed position) with a constant friction force of $0.0475\  N$. What is the speed (in $SI\  units$) of the bullet as it emerges from the barrel?

A $1\; kg$ block situated on a rough incline is connected to a spring of spring constant $100\;N m ^{-1}$ as shown in Figure. The block is released from rest with the spring in the unstretched position. The block moves $10 \;cm$ down the incline before coming to rest. Find the coefficient of friction between the block and the incline. Assume that the spring has a negligible mass and the pulley is frictionless.

$A$ spring block system is placed on a rough horizontal floor. The block is pulled towards right to give spring an elongation less than $\frac{{2\mu mg}}{K}$ but more than $\frac{{\mu mg}}{K}$ and released.The correct statement is

A spring with spring constant $k $  is extended from $x = 0$to$x = {x_1}$. The work done will be