Two blocks of mass $M_1 = 20\,kg$ and $M_2 = 12\,kg$ are connected by a metal rod of mass $8\,kg.$ The system is pulled vertically up by applying a force of $480\,N$ as shown. The tension at the mid-point of the rod is ........ $N$
$144$
$96$
$240$
$192$
In the given arrangement all surfaces are smooth. What acceleration should be given to the system, for which the block $m_2$ doesn't slide down?
A block '$A$' takes $2\,s$ to slide down a frictionless incline of $30^{\circ}$ and length ' $l$ ', kept inside a lift going up with uniform velocity ' $v$ '. If the incline is changed to $45^{\circ}$, the time taken by the block, to slide down the incline, will be approximately $........\,s$
The value of $\frac{T_3}{T_1}$ is .............
A block of mass $m$ is placed on a smooth inclined wedge $ABC$ of inclination $\theta$ as shown in the figure. The wedge is given an acceleration $a$ towards the right. The relation between $a$ and $\theta$ for the block to remain stationary on the wedge is
A horizontal force $10 \mathrm{~N}$ is applied to a block $A$ as shown in figure. The mass of blocks $A$ and $B$ are $2 \mathrm{~kg}$ and $3 \mathrm{~kg}$ respectively. The blocks slide over a frictionless surface. The force exerted by block $A$ on block $B$ is :