Two charged conducting spheres of radii $a$ and $b$ are connected to each other by a wire. What is the ratio of electric fields at the surfaces of the two spheres? Use the result obtained to explain why charge density on the sharp and pointed ends of a conductor is higher than on its flatter portions.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let a be the radius of a sphere $A, Q_{A}$ be the charge on the sphere, and $C_{A}$ be the capacitance of the sphere.

Let $b$ be the radius of a sphere $B$, $Q$ be the charge on the sphere, and $C$ a be the capacitance of the sphere.

since the two spheres are connected with a wire, their potential $(v)$ will become equal.

Let Eabe the electric field of sphere $A$ and $E_{8}$ be the electric field of sphere $B$. Therefore, their ratio,

$\frac{E_{A}}{E_{B}}=\frac{Q_{A}}{4 \pi \epsilon_{0} \times a_{2}} \times \frac{b^{2} \times 4 \pi \epsilon_{0}}{Q_{B}}$

$\frac{E_{A}}{E_{B}}=\frac{Q_{1}}{Q_{B}} \times \frac{b^{2}}{a^{2}}\ldots(i)$

However, $\frac{Q_{A}}{Q_{B}}=\frac{C_{A} V}{C_{B} V}$

And, $\frac{C_{A}}{C_{B}}=\frac{a}{b}$

$\therefore \frac{Q_{A}}{Q_{B}}=\frac{a}{b}\dots (ii)$

Putting the value of $(ii)$ in $(i)$, we obtain

$\therefore \frac{E_{A}}{E_{B}}=\frac{a}{b} \frac{b^{2}}{a^{2}}=\frac{b}{a}$

Therefore, the ratio of electric fields at the surface is $b/a.$

Similar Questions

A metallic spherical shell has an inner radius ${{\rm{R}}_1}$ and outer radius ${{\rm{R}}_2}$. A charge $\mathrm{Q}$ is placed at the centre of the spherical cavity. What will be surface charge density on $(i)$  the inner surface, and $(ii)$ the outer surface ?

The vehicles carrying inflammable fluids usually have metallic chains touching the ground:

  • [JEE MAIN 2024]

The adjacent diagram shows a charge $+Q$ held on an insulating support $S$ and enclosed by a hollow spherical conductor. $O$ represents the centre of the spherical conductor. and $P$ is a point such that $OP = x $ and $SP = r$ . The electric field at point $P$  will be

Two spheres of radius $R$ and $2R$ having charge $Q$ and $2Q$ respectively are placed far away from each other. How much charge will flow when key $'k'$ is pressed ?

Figure shows a charged conductor resting on an insulating stand. If at the point $P$ the charge density is $\sigma $, the potential is $V$ and the electric field strength is $E$, what are the values of these quantities at point $Q$

Charge density        potential        Electric intensity