Two charged particles of masses $m$ and $2m$ have charges $+2q$ and $+q$ respectively. They are kept in uniform electric field and allowed to move for some time. The ratio of their kinetic energies will be
$1 : 1$
$4 : 1$
$1 : 4$
$8 : 1$
Two charges $-q$ each are separated by distance $2d$. A third charge $+ q$ is kept at mid point $O$. Find potential energy of $+ q$ as a function of small distance $x$ from $O$ due to $-q$ charges. Sketch $P.E.$ $v/s$ $x$ and convince yourself that the charge at $O$ is in an unstable equilibrium.
An alpha particle is accelerated through a potential difference of ${10^6}\,volt$. Its kinetic energy will be......$MeV$
In the figure the charge $Q$ is at the centre of the circle. Work done is maximum when another charge is taken from point $P$ to
If $50$ joule of work must be done to move an electric charge of $2 \,C$ from a point, where potential is $-10$ volt to another point, where potential is $V$ volt, the value of $V$ is ......... $V$
In moving from $A$ to $B$ along an electric field line, the electric field does $6.4 \times {10^{ - 19}}\,J$ of work on an electron. If ${\phi _1},\;{\phi _2}$ are equipotential surfaces, then the potential difference $({V_C} - {V_A})$ is.....$V$