Two circles whose radii are equal to $4$ and $8$ intersects at right angles. The length of their common chord is:-
$\frac{16}{\sqrt 5}$
$8$
$4\sqrt 6$
$\frac{8 \sqrt 5}{5}$
Let
$A=\left\{(x, y) \in R \times R \mid 2 x^{2}+2 y^{2}-2 x-2 y=1\right\}$
$B=\left\{(x, y) \in R \times R \mid 4 x^{2}+4 y^{2}-16 y+7=0\right\} \text { and }$
$C=\left\{(x, y) \in R \times R \mid x^{2}+y^{2}-4 x-2 y+5 \leq r^{2}\right\}$
Then the minimum value of $|r|$ such that $A \cup B \subseteq C$ is equal to:
The equation of the circle having the lines ${x^2} + 2xy + 3x + 6y = 0$ as its normals and having size just sufficient to contain the circle $x(x - 4) + y(y - 3) = 0$is
Radical axis of the circles $3{x^2} + 3{y^2} - 7x + 8y + 11 = 0$ and ${x^2} + {y^2} - 3x - 4y + 5 = 0$ is
Circles ${(x + a)^2} + {(y + b)^2} = {a^2}$ and ${(x + \alpha )^2}$ $ + {(y + \beta )^2} = $ ${\beta ^2}$ cut orthogonally, if
The minimum distance between any two points $P _{1}$ and $P _{2}$ while considering point $P _{1}$ on one circle and point $P _{2}$ on the other circle for the given circles' equations
$x^{2}+y^{2}-10 x-10 y+41=0$
$x^{2}+y^{2}-24 x-10 y+160=0$ is .........