Two coaxial solenoids are made by winding thin insulated wire over a pipe of cross-sectional area $A = 10\ cm^2$ and length$= 20\ cm$. If one of the solenoid has $300$ turns and the other $400$ turns, their mutual inductance is
$\mu_{0}=4 \pi \times 10^{-7} \;TmA ^{-1}$
$2.4$$\pi $ $\times$ $10^{-4}$ $H$
$2.4$ $\pi $ $\times$ $10^{-5}$ $H$
$4.8$$\pi $ $\times 10^{-4}$ $H$
$4.8$ $\pi $ $\times$ $ 10^{-5} $ $H$
A pair of adjacent coils has a mutual inductance of $1.5\; H$. If the current in one coil changes from $0$ to $20\; A$ in $0.5\; s ,$ what is the change of flux (in $Wb$) linkage with the other coil?
Two conducting circular loops of radii $R_{1}$ and $\mathrm{R}_{2}$ are placed in the same plane with their centres coinciding. If $R_{1}>>R_{2}$, the mutual inductance $M$ between them will be directly proportional to:
If the coefficient of mutual induction of the primary and secondary coils of an induction coil is $5\, H$ and a current of $10\, A$ is cut off in $5\times10^{-4}\, s$, the $emf$ inducted (in $volt$) in the secondary coil is
Two coil $A$ and $B$ have coefficient of mutual inductance $M = 2H$. The magnetic flux passing through coil $A$ changes by $4$ Weber in $10$ seconds due to the change in current in $B$. Then
A small square loop of wire of side $l$ is placed inside a large square loop of wire of side $(L > l)$. The loop are coplanar and their centre coincide. The mutual inductance of the system is proportional to