Two coils have a mutual inductance $0.005\,H$ . The current changes in the first coil The current changes in the first coil according to the equation $I = I_0 sin\,\omega t$ , where $I_0 = 10\,A$ and $\omega = 100\pi \,rad/s$ . The maximum value of $emf$ in the second coil will be
$5\pi $
$10\pi $
$2.5\pi $
$15\pi $
Two coaxial coils are very close to each other and their mutual inductance is $5 \,mH$. If a current $50 sin 500 \,t$ is passed in one of the coils then the peak value of induced e.m.f in the secondary coil will be ........... $V$
Two coils $P$ and $Q$ are separated by some distance. When a current of $3\, A$ flows through coil $P$ a magnetic flux of $10^{-3}\, Wb$ passes through $Q$. No current is passed through $Q$. When no current passes through $P$ and a current of $2\, A$ passes through $Q$, the flux through $P$ is
A solenoid has $2000$ turns wound over a length of $0.3\,m$. The area of cross-section is $1.2\times10^{-3}\,m^2$. Around its central section a coil of $300$ turns is closely wound. If an initial current of $1\,A$ is reversed in $0.25\,s$. Find the emf induced in the coil.......$mV$
A small square loop of wire of side $l$ is placed inside a large square loop of wire $L(L \gg l)$. Both loops are coplanar and their centres coincide at point $O$ as shown in figure. The mutual inductance of the system is.
The number of turns of primary and secondary coils of a transformer are $5$ and $10$ respectively and the mutual inductance of the transformer is $25\,henry$. Now the number of turns in the primary and secondary of the transformer are made $10$ and $5$ respectively. The mutual inductance of the transformer in henry will be