Two concentric spheres $A$ and $B$ are kept very near to each other. $A$ is negatively charged and $B$ is earthed. The true statement is
$(A)$ Charge on $B$ is zero
$(B)$ Potential at $B$ is zero
$(C)$ Charge is uniformly distributed on $A$
$(D)$ Charge is non uniformly distributed on $A$
$A$ and $C$
$A$ and $D$
$B$ and $C$
$B$ and $D$
A parallel plate capacitor of area $A$, plate separation $d$ and capacitance $C$ is filled with three different dielectric materials having dielectric constant $K_1,K_2$ and $K_3$ as shown. If a single dielectric material is to be used to have the same capacitance $C$ in this capacitor, then its dielectric constant $K$ is given by: ($A =$ Area of plates)
Electric flux through surface $s_1$
A parallel plate capacitor of capacitance $C$ is connected to a battery and is charged to a potential difference $V$. Another capacitor of capacitance $2C$ is connected to another battery and is charged to potential difference $2V$ . The charging batteries are now disconnected and the capacitors are connected in parallel to each other in such a way that the positive terminal of one is connected to the negative terminal of the other. The final energy of the configuration is
Electric field at a place is $\overrightarrow E = {E_0}\widehat i\,\,V/m$. A particle of charge $+q_0$ moves from point $A$ to $B$ along a circular path find work done in this motion by electric field :-
In the figure a capacitor is filled with dielectric. The resultant capacitance is