- Home
- Standard 11
- Physics
Two discs of moments of inertia $I_1$ and $I_2$ about their respective axes (normal to the disc and passing through the centre), and rotating with angular speed $\omega _1$ and $\omega _2$ are brought into contact face to face with their axes of rotation coincident. What is the loss in kinetic energy of the system in the process ?
$\frac{{{I_1}{I_2}{{({\omega _1} - {\omega _2})}^2}}}{{2({I_1} + {I_2})}}$
$\frac{{{I_1}{I_2}{{({\omega _1} - {\omega _2})}^2}}}{{({I_1} + {I_2})}}$
$\frac{{{I_1}{I_2}{{({\omega _1} + {\omega _2})}^2}}}{{({I_1} - {I_2})}}$
$\frac{{{I_1}{I_2}{{({\omega _1} + {\omega _2})}^2}}}{{2({I_1} - {I_2})}}$
Solution
Let the moment of inertia of disc $I$ be $I$, and
the angular speed of disc $I$ be $\omega_{1}$.
Let the moment of inertia of disc $\Pi$ be $I_{2}$ and the angular speed of disc $\Pi$ be $\omega_{2}$
Angular momentum of disc $i$ be $\mathrm{L}_{1}=\mathrm{I}_{1} \omega_{1}$ and angular momentum of disc $II$ be $L_{2}=I_{2} \omega_{2}$
The initial angular momentum of two discs is given by $\mathrm{Li}=\mathrm{I}_{1} \mathrm{\omega}_{1}+\mathrm{I}_{2} \mathrm{\omega}_{2}$
When two discs are brought into contact face to face (one on top of other) and their axis of rotation coincide, the moment of inertia $I$ of
the system is equal to the sum of their individual moments of inertia.
i.e. $\mathrm{I}=\mathrm{I}_{\mathrm{t}}+\mathrm{I}_{2}$
Let $\omega$ be the final angular speed of the system.
The final angular momentum of the systemis given by
$\mathrm{L}_{t}=\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right) \omega$
Acconding to law of conservation of angular momentum, we get
$\mathrm{L}_{\mathrm{i}}=\mathrm{L}_{\mathrm{t}}$
$\mathrm{I}_{1} \omega_{1}+\mathrm{I}_{2} \omega_{2}=\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right) \omega$
According to law of conservation of angular momentum, we get
$\mathrm{L}_{\mathrm{i}}=\mathrm{L}_{\mathrm{t}}$
$\mathrm{I}_{1} \omega_{1}+\mathrm{I}_{2} \omega_{2}=\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right) \omega$
$\omega=\frac{I_{1} \omega_{1}+I_{2} \omega_{2}}{I_{1}+I_{2}}$ $…(i)$
Initial kinetic energy of two discs is
$\mathrm{K}_{1}=\frac{1}{2} \mathrm{I}_{1} \omega_{1}^{2}+\frac{1}{2} \mathrm{I}_{2} \omega_{2}^{2}$
Final kinetic energy of the system is
$\mathrm{K}_{\mathrm{f}}=\frac{1}{2}\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right) \omega^{2}$
$=\frac{1}{2}\left(I_{1}+I_{2}\right)\left(\frac{I_{1} \omega_{1}+I_{2} \omega_{2}}{I_{1}+I_{2}}\right)^{2}$ $(Using \,(i))$
$=\frac{1}{2} \frac{\left(\mathrm{I}_{1} \omega_{1}+\mathrm{I}_{2} \omega_{2}\right)^{2}}{\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)}$
Loss in kinetic energy of the system
$\Delta \mathrm{K}=\mathrm{K}_{i}-\mathrm{K}_{\mathrm{t}}$
$=\frac{1}{2}\left(\mathrm{I}_{1} \omega_{1}^{2}+\mathrm{I}_{2} \omega_{2}^{2}\right)-\frac{\left(\mathrm{I}_{1} \omega_{1}+\mathrm{I}_{2} \omega_{2}\right)^{2}}{2\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)}$
$=\frac{1}{2} \mathrm{I}_{1} \omega_{1}^{2}+\frac{1}{2} \mathrm{I}_{2} \omega_{2}^{2}-\frac{1}{2} \frac{\mathrm{I}_{1}^{2} \omega_{1}^{2}}{\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)}$
$-\frac{1}{2} \frac{\mathrm{I}_{2}^{2} \omega_{2}^{2}}{\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)}-\frac{1}{2} \frac{2 \mathrm{I}_{1} \mathrm{I}_{2} \omega_{1} \omega_{2}}{\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)}$
$=\frac{1}{\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)}\left[\frac{1}{2} \mathrm{I}_{1}^{2} \omega_{1}^{2}+\frac{1}{2} \mathrm{I}_{1} \mathrm{I}_{2} \omega_{1}^{2}\right.$
$+\frac{1}{2} \mathrm{I}_{1} \mathrm{I}_{2} \omega_{2}^{2}+\frac{1}{2} \mathrm{I}_{2}^{2} \omega_{2}^{2}-\frac{1}{2} \mathrm{I}_{1}^{2} \omega_{1}^{2}$
$\left.-\frac{1}{2} \mathrm{I}_{2}^{2} \omega_{2}^{2}-\mathrm{I}_{1} \mathrm{I}_{2} \omega_{1} \omega_{2}\right]$
$=\frac{I_{1} I_{2}}{2\left(I_{1}+I_{2}\right)}\left(\omega_{1}^{2}+\omega_{2}^{2}-2 \omega_{1} \omega_{2}\right)$
$=\frac{I_{1} I_{2}\left(\omega_{1}-\omega_{2}\right)^{2}}{2\left(I_{1}+I_{2}\right)}$