Two identical balls having like charges and placed at a certain distance apart repel each other with a certain force. They are brought in contact and then moved apart to a distance equal to half their initial separation. The force of repulsion between them increases $4.5$ times in comparison with the initial value. The ratio of the initial charges of the balls is
$2$
$3$
$4$
$6$
Two opposite and equal charges $4 \times {10^{ - 8}}\, coulomb$ when placed $2 \times {10^{ - 2}}\,cm$ away, form a dipole. If this dipole is placed in an external electric field $4 \times 10^8\, newton / coulomb$ , the value of maximum torque and the work done in rotating it through $180^o$ will be
In the circuit shown, a potential difference of $60\,V$ is applied across $AB$. The potential difference between the point $M$ and $N$ is.....$V$
Potential in the $x-y$ plane is given as $V = 5(x^2 + xy)\, volts$. The electric field at the point $(1, -2)$ will be
Four charges are placed at the circumference of a dial clock as shown in figure. If the clock has only hour hand, then the resultant force on a charge $q_0$ placed at the centre, points in the direction which shows the time as:
Five balls numbered $1$ to $5$ are suspended using separate threads. Pairs $(1,2), (2,4)$ and $(4,1)$ show electrostatic attraction while pairs $(2,3)$ and $(4,5)$ show repulsion. Therefore ball $1$ must be